

ВЕСТНИК

информационно - методическое издание

Отдела образования и Научно-методического центра Петроградского района Санкт-Петербурга

Содержание

ОПЫТНО-ЭКСПЕРИМЕНТАЛЬНАЯ РАБОТАОШИБКА! ЗАКЛАДКА НЕ ОПРЕДЕЛЕНА.

ПОВЫШЕНИЕ КВАЛИФИКАЦИИОШИБКА! ЗАКЛАДКА НЕ ОПРЕДЕЛЕНА.

ЛИДЕРЫ ОБРАЗОВАНИЯОШИБКА! ЗАКЛАДКА НЕ ОПРЕДЕЛЕНА.

ОЛИМПИАДНОЕ ДВИЖЕНИЕОШИБКА! ЗАКЛАДКА НЕ ОПРЕДЕЛЕНА.

МЕТОДИЧЕСКАЯ КОПИЛКА

Использование химического эксперимента при решении задач

Левшук А.Н., учитель химии ГОУ №84

Решение задач занимает важное место в химическом образовании, так как это один из приемов обучения, посредством которого обеспечивается более глубокое и полное понимание материала и вырабатывается умение самостоятельно применять приобретенные знания. Мною разработана система семинарских занятий по решению задач для учащихся 8-11 классов, которые помогают учителю в организации полноценной познавательной деятельности, способствующей выработке у учащихся стойкого навыка в решении задач.

Своеобразность заданий, групповые формы работы, игровые технологии, элементы мастерских способствуют повышению интереса и мотивации к предмету.

Сочетание индивидуальной и групповой форм работ дает контролировать усвоение различных возможность каждым учеником в отдельности. Результаты совместной работы оказываются более высокими по сравнению с выполнением работы каждым учеником в отдельности. На занятиях появляется стимул соревновательного характера между группами. Атмосфера сотрудничества И взаимопомощи, царящая семинарах способствует продуктивности процесса познания в целом.

Ведущее место в преподавании химии занимает школьный эксперимент.

Однако, в последнее время, в связи с увеличением объема теоретического материала в учебных программах и сокращением учебных изучение естественнонаучных часов планах на дисциплин, количество демонстрационных и лабораторных опытов, регламентированных программами явно недостаточно для развития исследовательских навыков у учащихся. Исследовательский метод широко используется на внеклассных занятиях, но давно назрела необходимость формирования творческой целенаправленного активности и исследовательских навыков непосредственно на уроках.

В своей педагогической деятельности я широко использую химический эксперимент как средство обучения решению задач. метод позволяет не только ЭКОНОМИТЬ НО минимизировать ошибки учащихся В расчетных задачах. Систематическое выполнение не только качественных, количественных экспериментальных задач приучает учащихся аккуратно работать, вырабатывает навыки точной количественной оценки результатов эксперимента.

работы, Выполняя ЭТИ учащиеся осваивают различные экспериментальные методы, применяемые в химии (взвешивание, титрование, синтез, анализ и т.д.). Решение задач с использованием эксперимента не только формирует общие правила работы в обеспечивает самый высокий лаборатории, И НО уровень способствует развивающего обучения школьников, развитию творческих способностей у учащихся, формирует интерес познанию химических явлений.

Наибольшие затруднения обычно вызывают задачи, в которых требуется определить выход химической реакции. Но после урока, на котором моделируются лаборатории по получению различных веществ, и практическом определении выходов осуществленных реакций, даже самые слабые учащиеся не делают ошибок в задачах этого типа.

Во время проведения такого урока группы соревнуются между собой, стараются выполнить эксперимент с наибольшим коэффициентом полезного действия.

Используя данную методику можно научить решать задачи на определение выходов химических реакций не только в 9-ом классе при изучении реакции ионного обмена, но уже и в 8-ом, например, изучая получение и собирание газообразных веществ (водорода или кислорода), методом вытеснения воды, измеряя их объем и сравнивая с теоретическими расчетами.

Мой педагогический опыт показывает, что знания полученные учащимися при решении задач с использованием эксперимента оказываются более прочными, чем при использовании традиционных методик обучения.

При проведении групповых занятий учитель не вмешивается в ход выполнения практической работы, а следит за дисциплиной и соблюдением правил безопасности, так как учащимся предлагается подробная пошаговая методика эксперимента.

Обучаемые обращаются к преподавателю, если возникают непреодолимые трудности. Учитель играет роль советника. Учащиеся видят его личную заинтересованность в успехе эксперимента, он не отчитывает их за неудачи, а пытается вскрыть причины и исправить ошибки, создавая ситуацию успеха для каждого ученика.

Примеры задач при проведении практикума по теме: «Реакции ионного обмена» для учащихся 9-ых классов.

1). Определение выхода продукта реакции по известной массе реагента и определенной экспериментально массе продукта реакции.

Химическое оборудование: химический поддон, 3 хим. стакана, воронка, фильтр, коническая колба, весы, стеклянная палочка.

Химические реактивы: карбонат натрия, тетрагидрат дихлорида марганца, вода.

Задача 1.

Определите массовый выход карбоната марганца от теоретически возможного, используя взаимодействие карбоната натрия с тетрагидратом дихлорида марганца.

Методика:

- 1). Определите погрешность взвешивания веществ.
- 2). Взвесьте 2г карбоната натрия.
- 3). Составьте уравнение химической реакции взаимодействия карбоната натрия с хлоридом марганца (II).
- 4). Рассчитайте по уравнению массу хлорида марганца (II), которая прореагирует с 2г. карбоната натрия.
- 5). Используя массу хлорида марганца (II),рассчитанную по п.4, рассчитайте массу тетрагидрата дихлорида марганца, необходимую для опыта.
- 6). Взвесьте необходимую массу тетрагидрата дихлорида марганца, чтобы он оказался в небольшом избытке.
- 7). Растворите взвешенные массы реагентов в воде в отдельных химических стаканах.
- 8). Количественно перенесите растворы в один стакан, перемешивая стеклянной палочкой. Ополосните стаканы, в которых находились растворы, объединив промывные воды с раствором, полученным в результате реакции ионного обмена.
- 9). Определите массу чистого сухого фильтра.
- 10). Отфильтруйте выпавший осадок, и тщательно промойте его на фильтре.
- 10). Высушите фильтр с осадком,
- 11). Взвесьте фильтр с осадком.
- 12). Определите массу осадка по разнице масс, определенных по п.11 и 9.
- 13). Рассчитайте массу карбоната марганца (II) по уравнению (см. п.3.), которую можно было бы получить по теории.
- 14). Определите массовый выход карбоната марганца по сравнению с теоретически возможным (в %), поделив массу, определенную в п.12 на массу, рассчитанную в п.13. и, умножив полученный результат на 100 %.

- 15). Проанализируйте полученные результаты и сделайте выводы.
- 16). Сравните результаты, полученные вашей группой с результатами других групп.
- 17). Рассчитайте среднее значение массового выхода карбоната марганца по сравнению с теоретически возможным для условий, в которых проводились реакции по результатам всех групп.
- 18). Оформите практическую работу.
- 19). Подготовьтесь защищать мини исследовательскую практическую работу.
- 2). Получение определенной массы продукта реакции, если экспериментально определен его массовый выход по сравнению с теоретически возможным.

Задача 2.

Используя экспериментально определенный массовый выход продукта химической реакции взаимодействия карбоната натрия с тетрагидратом дихлорида марганца от теоретически возможного (см. задачу 1), получите 10г карбоната марганца (II).

Методика:

- 1). Определите погрешность взвешивания веществ.
- 2). Составьте уравнение химической реакции взаимодействия карбоната натрия с хлоридом марганца (II).
- 3). Рассчитайте по уравнению массы хлорида марганца (II) и карбоната натрия, которые необходимы для получения 10г. карбоната марганца(II), учитывая выход продукта реакции, полученный при решении экспериментальной задачи 1.
- 4). Используя массу хлорида марганца (II), рассчитанную по п.3, рассчитайте массу тетрагидрата дихлорида марганца, необходимую для опыта.
- 5). Взвесьте, рассчитанные по п.3 и п.4 массы веществ.
- 6). Растворите взвешенные массы реагентов в воде в отдельных химических стаканах.
- 7). Количественно перенесите растворы в один стакан, перемешивая стеклянной палочкой. Ополосните стаканы, в которых находились растворы, объединив промывные воды с раствором, полученным в результате реакции ионного обмена.
- 8). Определите массу чистого сухого фильтра.
- 9). Отфильтруйте выпавший осадок, и тщательно промойте его на фильтре.

- 10). Высушите фильтр с осадком.
- 11). Взвесьте фильтр с осадком.
- 12). Определите массу осадка по разнице масс, определенных по $\rm n.11~u~8.$
- 13). Сравните полученную экспериментально массу карбоната марганца (II) с требуемой по условию задачи.
- 14). Проанализируйте полученные результаты и сделайте выводы.
- 15). Сравните результаты, полученные вашей группой с результатами других групп.
- 16). Оформите практическую работу.
- 17). Подготовьтесь защищать мини исследовательскую практическую работу.

Ответственный за выпуск: Крупская Н.С. Составители: Жукова О.Е., Шитова С.Н., Фиалковская Т.Г. Ответственный за набор материала: Голованов А.С.

Сдано в набор 27.05.08 Подписано в печать 03.06.08 Сборник набран и напечатан в НМЦ Петроградского района Санкт-Петербург, Петроградская наб., д.18, корп.3 тел./факс 347-6795

http://www.pnmc.spb.ru

pnmc@mail.ru